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Abstract. Using a vector coherent state framework and an associated vector Bargmann 
Hilbert space, the structure of two classes of U(n)  : U(  n - 1) unit projective operators is 
shown to be intimately related to (6- j )  and (9-j) coefficients of the U(n - 1) subalgebra. 
Explicit verification of limit properties for these operators allows the unambiguous assign- 
ment of a set of canonical operator labels. 

1. Introduction 

The existence of the canonical decomposition chain 

U(n) = U(n - 1) 2 . .  .=U(2)  = U(1) 

for the unitary group U( n )  has a very important consequence regarding the construction 
of unit tensor operators for U(n) or, equivalently, for the computation of coupling 
coefficients symmetry adapted to the canonical chain: such tensor operators can be 
constructed in a modular fashion in terms of a set of imbricated unit projective tensor 
operators for U(i+ 1): U(i)  (Louck and Biedenharn 1970). These projective operators 
are, by definition, U( i)-invariant operators. 

Consider, for specificity, the U( n) : U( n - 1) unit projective operator or, 
equivalently, the U( n )  : U( n - 1) reduced Wigner coefficients. One might then ask if 
this projective operator, a U( n - 1) invariant operator, can be constructed, in a simple 
multiplicative fashion, in terms of ( 6 - j )  and (9-j) recoupling operators for U( n - l ) ,  a 
known class of U(n - 1) invariant operators, and some well defined U(n) : U(n - 1) 
invariant normalisation coefficients K with simple limit properties. Such a question 
is motivated by the recent realisation (Le Blanc and Hecht 1987) that the elementary 
unit projective operators for U(n) (Biedenharn and Louck 1968) can be written down 
rather simply in terms of U(n - 1) unitary Racah coefficients and K normalisation 
factors. This result also applies to a restricted class of U(3) : U(2) isoscalar coefficients 
(Le Blanc 1987). A major result of the present paper is to develop these generalisations 
for two large classes of unit tenssr operators in all U(n) .  

The concept which allows the demonstration of this gratifying result is that of 
induction of finite-dimensional irreducible representations for U( n )  from representa- 
tions of its canonical subgroup U( n - 1). This induction process is embodied in a most 
transparent fashion in the theory of vector coherent states (Deenen and Quesne 1984, 
Rowe 1984, Rowe et a1 1985, 1988, Le Blanc and Rowe 1988a, b). Vector coherent 
state (vcs) theory prescribes the rules for an expansion of the Lie algebra u(n)  of 
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32 R Le Blanc and L C Biedenharn 

U( n )  in terms of a set of linear differential operators acting on a space of vector-valued 
holomorphic functions. Upon introduction of an appropriate scalar product, this space 
is referred to as a vector Bargmann (VB)  Hilbert space (Rowe 1984, Le Blanc and Rowe 
1988b). Significantly, the vcs expansion belongs to the enveloping algebra of a 
contraction of u( n )  (the contraction of its semisimple part su( n )  + U( n - 1)O hw( n - 1)); 
vcs theory therefore offers an optimal framework for the study of limit properties of 
the projective operators in the contraction limit. 

The structure of this paper is follows. In 0 2, we review vcs theory for Gel’fand-Weyl 
bases of U( n ) .  In 0 3, we extend vcs theory to U( n )  unit tensor operators acting on 
the VB Hilbert space. In 0 4, matrix elements for two general classes of tensor operators 
in U( n )  are evaluated as closed algebraic expressions for U(n) : U( n - 1) unit projective 
operators involving U( n - 1) unitary (9-j) coefficients and vcs normalisation coefficients 
K. Finally, in 0 5, we study the limit properties of these results under contraction of 
the u(n) Lie algebra and justify the assignment of specific tensor operator patterns to 
these vcs tensor operators. 

2. vcs construction of U(n) Gel’fand-Weyl bases 

The detailed prescription for the vcs construction of G 3 H symmetry-adapted bases 
for ladder representations of a group G and a subgroup H of G can be found in Rowe 
et a1 (1988) and Le Blanc and Rowe (1988a, b). This construction is a generalisation 
of standard (scalar) coherent state theory (Perelomov 1972, 1986, Onofri 1975). We 
review in this section the vcs realisation of the unitary Lie group U( n )  with Lie algebra 
u(n) generated by the set of generators {E,; 1 S i , jC  n }  obeying the standard u(n)  
commutator algebra. 

Since we are interested in the Gel’fand basis of U(n), we set G = U(n)  = SU(n)O 
U(1), and H =  U(n - l )@U(l) , , ,  where the Abelian group U(1), is generated by the 
nth weight operator E,,,,. (The more general construction U( m + n )  3 U( m )  0 U( n )  
and its supersymmetric counterpart U( m/ n )  2 U( m)OU(  n )  have recently been given 
by Le Blanc and Rowe (1988b).) Consequently, we decompose the Lie algebra u(n)  
into four subsets: 

( a )  the U( n - 1) subalgebra? 

u(n - 1) = span{Cap = E,@ ; 1 < a, p s n - 1) ( 2 . l a )  

( b )  the Abelian subalgebra U(  l), 

u(l),, = span{E,,,) (2 . lb)  

( c )  an Abelian nilpotent subalgebra of raising operators 

n, = span{A, = E,, ; 1 S a C n - 1 )  (2.lc) 

( 2 . l d )  

Consider a linear unitary irreducible representation (unirrep) of U( n) defined by 
the Young frame$ [m, ]  = [mlnm2, .  . . m,,,]. The carrier space of [m,,]  will be denoted 

( d )  an Abelian nilpotent subalgebra of lowering operators 

n- =span{& = E,, ; 1 s a c n - 1). 

t Throughout this paper, we adopt the convention that latin indices run from 1 to n while greek indices 
run from 1 to n - 1 .  
$ More generally, we set [mil E [m, , ,  mZj ,  . . . , mi,]. 
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by the set of vectors {l(m),)}, where ( m ) ,  is an n-rowed Gel'fand-Weyl pattern (Baird 
and Biedenharn 1963, Louck 1970). The vcs approach, which is closely related to the 
induction construction of Mackey (1968), focuses, for a highest weight unirrep, on the 
subset of vectors in [m,] annihilated by the raising operator algebra n,, i.e. on the subset 

{ l ( ~ ) n - l ) l =  {l (mIn)E [mnl such that A, Km),) = 0, VA, E n+>. (2.2) 
This subset of vectors carries the irrep 

[ ~ n - 1 l @ [ ~ n n l =  [ U l , f I - l ,  U2,n-1 * * Y U,-l,fl-1I@[~,fll 
of the stability subgroup H =  U(n - l ) O U ( l ) ,  and is called the intrinsic space. 

of vector-valued holomorphic functions defined by 

with u ~ , , - ~  = m,, 

A vector coherent state realisation R(O)  of a generator O E  u (n )  acts on the space 

I (711 )n)VCS = c I ( U )  n -1)(( U )  f l -  1 I ( m )  ,) (2.3) 
( U  )n- I E [u"-ll 

where I(m),) is any state of the unirrep [m,] of u(n), z.A=Z;:: z,A,, and {z,} is a 
set of ( n  - 1) complex variables used as coordinates for the coset space U(n)/(U(n - 
l ) O U (  l ) , ) .  We identify the complex variables {za} with boson creation operators; 
the set {a,= a/az,} denotes their annihilation counterparts. The set of operators 
{z,, a@, a,,, 1 S a, p S n - 1) therefore closes upon a Heisenberg-Weyl (boson) algebra 
hw(n - 1) with standard commutation relations [a,, zp]  = a,@. We thus rewrite (2.3): 

I ( m )  ,hCS = ((U ) n - l l  e z  (172) .)(IO) @ I ( U )  ,-d) (2.4) 
(U)"-] 

where 10) is the z-boson vacuum. The vcs realisation of the kets then becomes a 
vector-valued function of boson operators {z,} on the vacuum. 

The basis {I(m),)vcs} carries the U(n) irrep [m,]. Let g belong to G =  U(n).  We 
define the action 

gl(m)rl)= D(g)l(m),) = c ol~:~",(m)"(g)l(")n) (2.5) 
("I,, 

with g +  D(g) defining the (matrix) irrep [m,] on the abstract basis {I(m),,)}. To show 
that the vcs basis (2.4) carries the same irrep, we use the same group action: 

gol(m)n)vcs = c ( (U) f l - l I  e " A g l ( ~ ) n ) ( l o ~ o l ( ~ ) f l - * ~ ) .  (2.6) 
( u I n - l  

It follows from (2.5) that 

= D i m : '  m ) , , ( m ) , ( g ) l ( m ' ) n ) V C S  (2.7) 

which establishes the desired result. 

0 E U( n). From (2.6), we see that 
Consider now the action of the Lie algebra u(n) on the basis {I(m),)vcs}. Let 

R (011 ( m  )n)VCS 

= ~ ' O l ( ~ ~ f l ) v c s  

= c ((u)fl-,l e"A~l(~),)(lo~ol(~)n-l~) 
(u )n- l  

1 1 = ( ( U ) , , - ~ I (  O + c [ z . A ,  0]+- [z*A,  [ z -  A, O]]+. . 
( u ) n - l  2! 
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One then finds, with the usual convention concerning the summation of repeated 
indices, the following vcs expansion for the Lie algebra u(n)  of U(n)  (Hecht eta1 
1987, Le Blanc and Rowe 1988b): 

a 
R(A,) = 8, - (2.9a) 

a z, 
(2.9b) 

( 2 . 9 ~ )  

(2.9d) 

where the action ofthe stability algebra on the intrinsic space defines the u( n - l ) O u (  l), 
intrinsic algebra span{ Ce,p}O span{ g,,,}: 

( ( ~ ) n - l I ~ , p  ez'AI(m),)= ( (~ )n - l I cep  eTAt(m),,) 

( (u)n-118nn eTAI(m),)= ((u)n-l/Enn erAI(m),). 

Cap E u(n - 1) 

Note that in the vcs realisation, the u(n-1)  subalgebra (2.9b) consists of the 
piecewise sum by component of the intrinsic u(n - 1) subalgebra (eap and a variant 
(-zpa,) of the Jordan-Schwinger boson realisation of u(n - 1). The two realisations 
commute, so that the vectors in {I( m),),cs} with sharp U( n - 1) labels are defined (see 
(2.11) and (2.12) below) by U(n - 1) vector couplings?. 

The set of vcs operators {a,}, like {A,}, carries the U(n - 1) irrep [lo]. From 
(2.9b), it follows that {z,} carries a U(n - 1) irrep [0- 11. Using this fact, we see that 
the direct product [0- 11 x . . . x [0- 11 of w such irreps defines uniquely the U(n - 1) 
irrep [0- w] as symmetric polynomials in {z,} of rank w. Let us denote the vectors 
of this irrep, normalised in the standard (boson) way, by 

(2.10) 

where ( - A ) , - 2  denotes the U( n - 2) Gel'fand-Weyl pattern labelling the U( n - 1) irrep 
[0 - w] and where Z["-"'( z )  is a fully symmetric and normalised polynomial of rank 
w in {z,}. The vectors in the vcs basis having prescribed U(n - 1) labels (m)n- l  are 
then, to within a phase and a normalisation coefficient (see (2.12) below), given by 

(2.11) 

where the square bracket represents a U(n-1) coupling and (m) , - ,  denotes the 
U( n - 1) Gel'fand-Weyl subpattern for the U(n - 1) subirrep [m,-,] belonging to the 
U(n)  irrep [m,]. 

Although the states (2.11) are properly normalised in U(n - 1) with respect to the 
vector Bargmann (VB) measure (Bargmann 1961, LeBlanc and Rowe 1988b), this 
normalisation is not consistent with the action of the vcs operators R (2.9) for the 
standard U( n )  unitary representation D ( g )  defined in (2.7). According to Weyl's 
celebrated theorem, we know that this realisation is nevertheless equivalent to the 
standard unitary realisation. Upon introduction of a similarity transformation K on 
the VB Hilbert space (allowing us to retain the simple VB measure and still retrieve 

t This observation readily explains the appearance of a (9-j) symbol in the expressions (4.3) and (4.6) for 
two classes of U(n) : U( n - 1) unit projective operators. 
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unitarity (Rowe 1984, Rowe et a1 1988, Le Blanc and Rowe 1988b)), one then obtains 
the following explicit form for the vcs vectors of a general U(n) irrep: 

where 

U(n - 1 )  irrep [O- w], 
( a )  Z [ o - " ] ( z )  are normalised boson polynomials of rank w in the {z,} carrying the 

(b) the rank w, eigenvalue of the operator W =  (E,,,, - m,,,,. l) ,  is given by 

(2.13) 
i = l  

(c )  {B~~f i l ( a )}  denotes the set of intrinsic bosonic states carrying the U(n -1)O 
U(1), irrep 

[ u n - - l l @ [ m n n l =  [ u l , n - l ~ * , n - l  . . . ,  ~ n - l , n - l l O [ m n n l  

= [m, ,m2, .  * a ,  m n - l , n l O [ ~ n n l .  

For definiteness, B["fil( a )  = B["P?-~](  a ; )  0 B [ " n n l (  a,) is the product of two boson poly- 
nomials with B r " n - l l (  a; )  a normalised boson polynomial (Louck and Biedenharn 1973) 
in the boson creation operators a;, 1s a , p s n - l ,  and the monomial B["nnl(a,) 
simply given by 

The u( n - 1)  @U( l),, intrinsic algebra is then given by the Jordan-Schwinger realisation 

(2.14) 

where d denotes a boson annihilation operator. 
( d )  10) now stands for both the z- and a-boson vacua. 
(e)  The bracket [. . . x .  . .], as in (2.11), denotes a U(n - 1 )  vector coupling. 
(f) The U(n - 1 )  x U( l),, invariant normalisation factor K is given by (Hecht et a2 

1987) 

(2.15) 

where the partial hook piJ is defined by pli  = m,. + j  - i. We promote K to an Hermitian 
operator, KO, = K&, with matrix elements, diagonal in U( n - l ) ,  given by (2.15). The 
generators of the stability algebra U(n - l )OU(l ) , , ,  i.e. R(C,,) and R(E,,,,),  then 
commute with KO, .  

(f) The phase factor 4 is given by 

4 = 4 4 % - l l )  - 4NO- w l )  - 4([mfl-, l) .  (2.16) 

(See Hecht et a2 (1987, appendix) for definition and properties of the phase factor 4. 
See also (4.3c).) With this phase convention, which agrees with the standard one, we 
shall consider only the positive square root of K 2 .  
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The importance of the vcs construction, which is successfully exploited in the 
remaining sections, lies in the fact that it yields a realisation of the u ( n )  Lie algebra 
and, more important, a construction of the U ( n )  carrier space defined entirely within 
the context of U (  n - 1 )  vector addition coefficients. In other words, the vcs construction 
allows one to obtain U ( n )  results with U ( n  - 1 )  methods, and is accordingly a most 
useful technique in a recursive approach to the set of all I J ( n )  groups. 

Finally, if one defines the (equivalent) realisation 

p ( 0 )  = K - ' R ( O ) K  ( 2 . 1 7 ~ )  

for U( n ) ,  the corresponding representation is then carried by the VB vectors 

{ I  ( m ) n ) V B  = K-'t ( m  )n)vcs} (2.17 b )  

which are explicitly orthonormal under the VB measure (this approach has been 
consistently advocated by Rowe). The representation p is then unitary under the usual 
boson conjugation rules ( z ) +  = d/dz, (at)'  = d. Hermiticity properties of the various 
operators introduced below will not be discussed explicitly. Nevertheless, they can 
easily be derived using the p realisation for U( n )  and would amount to a re-derivation 
of some well known symmetry properties of (multiplicity-free) coupling coefficients 
for U ( n )  (see, e.g., Hecht et a1 1987, appendix.) 

3. U(n) tensor operators in a vcs framework 

The construction of a canonical basis for tensor operators in U ( n )  relies heavily on 
two properties: the equivariance property and the derivation property. 

( a )  The equivariance property. Let t denote a tensor operator in U ( n ) .  Then t is 
a set of operators t = { t ( m ) , }  obeying the defining relation for equivariance, 

for g E U ( n )  and (m),,, ( m ' ) ,  Gel'fand-Weyl patterns in U ( n ) ,  labelling a basis for 
the irrep [m,]. Unit tensor operators, which form an operator basis for all tensor 
operators, can be canonically realised by matrices in the space X x  pus' where X is 
the Hilbert space X = ZLmn,@ X([ m,]), the direct sum of carrier spaces for each unirrep 
[m,] of U ( n )  taken once and only once, subject to the equivalence constraint 
D [ m , n + m n n , m 2 n + m n n , . . . , m ~ ~ l  ~ D [ m I  ,p2,...., 01 . This construction for X has been termed a 
'model space' for U (  n )  by Gel'fand and Zelevinsky (1985). 

( b )  The derivation property. Let 0 belong to the Lie algebra u ( n ) .  A realisation 
of u ( n )  by linear operators has the derivation property if and only if 

O( A B )  = (OA) B + A( OB) (3.2) 

where A B  denotes the tensor product of two representations of U (  n ) ,  including (using 
equivariance) tensor operators. 

Unit tensor operators can be given a canonical matrix realisation as follows. Define 
a unit tensor operator t by the symbol 
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where 

is the Gel’fand-Weyl pattern associated with the vector ( m(r) ) , ,  of the irrep [m‘,”], and 
(r)f l - l  is an operator (inverted) pattern which canonically resolves all multiplicity 
(Louck and Biedenharn 1970). Such a unit tensor operator t in U(n)  has an action 
on a generic state vector that effects a change in the U(n)  representation labels, i.e. 
t :[m,]+[m,]+[A(r)], where [A(r)]  = [ A l ( r ) ,  A2(r),  . . . , A,(r)] denotes the label 
shifts Ai ( r )  (Biedenharn and Louck 1968, Louck 1970) and the sum is done component- 
wise ( mi, + mi, + Ai(T)). The matrices of the unit tensor operator ([ m:)]) are then the 
U(n)  vector addition coefficients: 

where [men] = [m“’] + [A(r)]. (More details of this standard construction can be found 
in Louck and Biedenharn, (1970).) 

It is easily verified that the vcs realisation R (2.9) of u(n)  has the derivation 
property on a product of vcs states. This indicates that the matrix realisation of unit 
tensor operators for U(n)  sketched above can indeed be implemented in the vcs 
framework. 

Consider a generic vcs state (2.12). The intrinsic space { [ ( u ) , - J } ,  realised in terms 
of a-boson polynomials B ( a ) ,  defines U( n - l ) O U ( l ) ,  (unnormalised) tensor 
operators. Since it is the transformation (equivariance) properties which are essential, 
we may as well replace the a-boson polynomials by normalised unit tensor operators 
in U( n - 1) 0 U( l),. Such tensor operators are canonically denoted by 

[Pu(nflll o ( m 9  
(d f ) )n -2  

U ( f )  “ r )  

i ( r ) f l - 2  1 
where, for now, we require all labels belonging to the U( n - 1) Young frame 

to be greater or equal to m‘,,!. We know, by construction, that vcs theory will promote 
the labels {u:,!-~} and m‘,: to the U(n)  frame 

The U( l) ,  unit tensor operator (my:) has a trivial action on a U( l) ,  (one-dimensional) 
irrep Imnn): 

The associated unit tensor operator in vcs theory, modelled on the vector coherent 
state (2.12), then has the form 

[ 4 i I I  = [u(llL1, u l f L 1 , .  . . , fl-l,,q-lI = [ m i l l ,  mi!,, . . . , n-l ,nI 

[“,“I = [m‘,fl,  mi:!, * ’ * , m:L,n,  ,,,I. 

(m(nAImnn) = Im,, + mi”). 

m ( O  
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(to within an overall U(n)  invariant phase) where the square bracket [. . . x . .  . ] ( m ( i ~ ) , , - ,  

once more denotes a U( n - 1) coupling to the U(n - 1) Gel'fand-Weyl pattern ( m ' t ) ) n - l .  
By construction, these operators transform equivariantly as an unirrep [m',"] of U( n) .  

The U(n - 1) operator pattern (r)n-2 associated with the intrinsic unit operator in 
(3.3) induces shifts A , ( T ) >  An(T)  = m::, 1 < is n - 1. Furthermore, the U(1), unit 
tensor (mt;) forces the nth shift A,(r) to assume its minimal U(n)  value A , ( r )  = m!;. 
One must therefore assign the U(n)  operator pattern 

(3.4a) 

(3.46) 

to the U(n)  unit tensor operator in the left-hand side of (3.3). In other words, the vcs 
construction requires the rL,n-l row to be maximally tied to the U(n)  partition [m',"]: 

ri,n-l = u $ - ~  = m!,:. 
In tableau parlance, the U( n) Young frame [ m',"] representing the tensor, modulo the 
fully antisymmetrised U( n) frame 

[ m t i ,  my;, . . . , ",','I 

1 rll 

... r n - 1 , n - z  

(I-)fl-2 

ml=( [U(nfll l  ) =  [ r 1 , n - z  
U ( f )  

n - l , n - 1  $1 U ( f )  ... U(l ,n - l  2 , n - I  

- 
n times 

distributes itself only on the first (n - 1) rows of the Young frame representing the 
initial U( n) unirrep [m"'] in the coupling 

We thus have the restrictions 

"f) nn = m ( i )  n n  + A n ( r )  = m ( C  n n  + m ( f )  n n .  (3.5b) 

We shall give a formal proof of the operator pattern assignment (3.4) in 0 5 .  
The vcs tensors (3.3)-which were built in analogy to the generic vcs vectors 

(2.12)-are not the most general since we have used only polynomials in {z,} and not 
more general polynomials over { z a }  and {a,}. The use of the latter allows us to ease 
the restriction A,(r) = m'", as we now discuss. 

Consider the operator a,. As one of the generators of u(n) ,  namely R ( A , ) ,  it is 
indeed a tensor operator, but it belongs to the U(n)  irrep [lo- 11 and not [lo] as one 
might like. To construct the fundamental vcs tensor operator transforming as the U( n) 
irrep [lo] with U(n)  shift Ai(r) = S i n ,  one must use (to within phase factors) the vcs 
operators 

( 3 . 6 ~ )  DgK:,(a,  0 (1 J )  K ;;o.;."2 a = l , .  . . , n - 1  
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and 

D A ~  K :p( 1 ,,) K ;; o;;I2 (3.6b) 

for the nth state of the U(n)  unirrep [lo], where (1,) is the U(l) ,  unit tensor, and 
where Do, is the U(n) dimension operator with eigenvalues 

The construction (3.6) generalises to a class of U( n )  unit tensor operators in vcs theory. 
These operators are (to within phase factors) given by the expression 

where 

(3.7b) 

and have been obtained by considering the Hermitian conjugate of the unit tensors 
(3.3) labelled by [-mt)], where the U( j )  Young frame [-mj] conjugate to [ m i ]  is 
defined by 

[-mj]=[-mj,j, -m,-l,j,. . ., - rq j1 .  
Equations (3.6) and (3.7) are most easily obtained using the p realisation of u(n)  
defined by (2.17) (see also (4.7)). 

We assign the operator pattern 

to the operator (3.7), i.e. the T,,n-l row is now minimally tied to the U(n)  partition 
[m‘,”]; ri,n-l = m$?l,n. This implies that the nth shift assumes its maximal value 
A,(r) = m!;. 

As we shall show explicitly in $ 5  4 and 5, the two classes (3.3) and (3.7) of tensor 
operators are completely defined, to within a multiplicative ratio of K factors which 
are U( n): U( n - 1) invariant quantities, in terms of U( n - 1) constructs. This is a quite 
remarkable result since it was entirely unexepected that any such general property 
could possibly hold true. These two classes of tensor operators do not, unfortunately, 
exhaust the set of all unit tensor operators. In this respect the construction of vcs 
unit tensor operators is not yet as definitive as the vcs construction of representations. 
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4. Evaluation of the projective operators with maximal or minimal Ah,(T) shift 

We compute in this section matrix elements for the vcs U( n) : U( n - 1) unit projective 
tensor operators constructed in the previous section. Since the U(2) tensor calculus 
presents no inherent difficulty or multiplicity, it is relevant to first consider the case 
of U(3) : U(2) unit projective operators. We show in § 4.1 that matrix elements of these 
U(3) operators can be given in terms of unitary (6-j) and (9-j) recoupling coefficients 
for U(2). The extension of these results to the general case of the U(n)  : U(n - 1) unit 
tensor operator is straightforward and effected in § 4.2. 

4.1. The U(3): U(2) case 

Let us begin by recalling the definition of a projective operator (Louck and Biedenharn 
1970). The concept of a projective operator has its origin in the elementary observation 
that a tensor operator in U(n)  is, at the same time, a tensor operator in the subgroup 
U( n - 1). Under the recursion hypothesis-by which one recursively generates U( n)  
objects using knowledge of all relevant structure in U( n - 1)-one assumes that all 
U( n - 1) unit tensor operators are known. Since the unit tensor operators in U( n - 1) 
are a basis for all tensor operators in U( n - l),  we may expand the U( n) unit tensor 
operator 

( V n - 1  ( U , - I  ( Y ) n - 2  

W ) ) , - I  ( Y ) n - 1  ( m 9 I - 2  

( [m2)1 1 = (z-2 [ [m:)1]( [m::,]) Y i , n - 1  =mi:i-1 (4.1) 

where 
( a )  the object in the square brackets on the right-hand side denotes a unit projective 

operator on the U(n)  : U(n - 1) space (thus a U(n - 1) invariant operator) and 
( b )  ([miLl]) is a U(n - 1) unit tensor operator with upper operator pattern ( Y ) ~ - ? .  

For clarity, let us note that the left-hand side of (4.1) operates on U(n)  vectors I(m),) 
where ( m ) ,  = ( mv) ,  1 S i, j S n is an arbitrary Gel'fand-Weyl U( n)  pattern, whilst the 
right-hand side has ([mrLl]) acting on vectors I(m),,-J of the U(n - 1) subgroup with 
(m),,-] = ( m y ) ,  1 S i , j  S n - 1; that is, the projective operator acts on the factor space 
U( n) : U( n - 1). To be fully explicit, let us state that the matrix elements of the projective 
operators take the form 

(4.2) 

where the U(n - 1) shifts A i ( r )  are defined similarly to the U(n - 1) shift Ai(r)  shifts. 
It is not difficult to evaluate the vcs unit tensor operators of § 3 when acting on 

the vcs vectors of § 2. Consider first the class of vcs operators (3.3) characterised by 
a minimal A,(T) = inti shift. For clarity, first consider the case n = 3. The vcs 
construction allows us to restrict operator manipulations entirely to U(2) couplingst 
and the most general case becomes a recoupling of four U(2) irreps, yielding the U(2) 

t It is convenient to use here the U(2) notation since there exists a sum-of-quanta rule for the eigenvalues 
w of the weight operator ( E 3 3 -  m 3 , - l )  made readily apparent by the vcs construction. As discussed by 
Biedenharn and Louck (1981b), all U(2) recoupling coefficients are identical to SU(2) recoupling coefficients: 
being shift invariant, one can always replace the U(2) labels [a,  b ]  by equivalent SU(2) labels 2 j =  ( a  - b ) .  
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version of a (9-j) unitary Coefficient?. We therefore obtain for the first class of 
U(3): U(2) projective operators (having A3(r) = mi:)) the matrix element 

(4.3a) 

where rll = m!{' - mi;), y,, = m',f - mi': and 

(4.3b) = w ( i ) +  W ( f )  

+ ( [ m j ] ) = f  ( m k j - m Q ) = +  C (j+1-2k)mkj.  (4.3 e )  
1 6  k s l s j  l<kssj  

Thus the most general U(3) : U(2) reduced Wigner coefficient obeying the constraint$ 
(3.5) is easily written down in terms of three simple constitutive blocks: a (9-j) 
recoupling coefficient for U(2) (Jucys and Bandzaitis 1977, Biedenharn and Louck 
1981a), a ratio of w factors and a ratio of K factors. 

It is useful to remark that shift invariance ( mQ = mu + constant) applies indepen- 
dently to each of the three constitutive blocks in the matrix element on the right-hand 
side of (4.3). Each of the U(2) patterns [ a ,  b ]  in the (9-j) coefficient on the right-hand 
side represents an angular momentum (a -b ) /2  and, as such, is shift invariant. 
Similarly, the equalities defining w and K are explicitly shift invariant. This observation 
is just a restatement of the equivalence relation (3.2) applied to (4.3). 

An interesting special case of this general result occurs when mi\) = mi;), inpi = mi;) 
implying w ( i )  = w(f)  = w, w ( ' )  = 0. Equation (4.3) then simplifies to 

(4.4a) 

t This result was anticipated. See remarks following (2.9). 
$ Note that the definition (2.13) for w and the constraint (3.5) imply (4.3b).  
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(4.4b) 

a result first derived by Le Blanc (1987). To obtain (4.4b) from (4.4a), we have used 
the relation 

j 2  jl jI2 [ + 0 i ] = u(jljdj3;j12j23) 
323 J I  

= [(2j12+ 1)(2j23 + 1 ) 1 ” ~ w ( j ~ j 2 j j 3  ;MA. (4.5) 

Turning our attention now to the projective operators (3.7) having maximal shift, 
A3(r) = mi;), we find 

where 

( 4 . 6 ~ )  

(4.6b) 

( 4 . 6 ~ )  

(This result is most easily obtained by considering matrix elements of the Hermitian 
conjugate tensor 

which belongs to the class (3.3) of unit tensor operators.) 
Of special interest is the case my: = m&’= 0 which corresponds to the symmetric 

U(3) tensor [mi‘:OO] with U(3) shifts A(r )  = (OOm(,i)). This special case includes the 
elementary U(3) tensor [loo] with U(3) shift (001). Due to the null entry 
[-mi\’, -m::)] = [OO], the (9-j) coefficient then collapses to a (6-j) coefficient. 
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4.2. The U(n) : U(n - 1) case 

Our method of deriving (4.3) and (4.6) shows that the results are not restricted to U(3), 
but are in fact valid for U(n) ,  mutatis mutandis. These results are, however, formal 
for (n - 1) > 3 since the necessary canonical definitions for the U( n - 1) recoupling 
coefficients and, more generally, the U( n - 1) tensor operator structures have been 
given in complete form for U(3) only. Since we are confident that this lacuna can be 
remedied, and since the form of the results would be maintained, it is then of some 
value to be explicit about this U(n)  result, as we now discuss. 

Clearly, the left-hand sides of ( 4 . 3 ~ )  and ( 4 . 6 ~ )  generalise at once to U(n),  as do 
the K factors and the various parameters w. The only technical point in this generalisa- 
tion concerns the U(n - 1)  analogues to the (6-j) and (9-j) recoupling coefficients. For 
the general case, the (6-j) symbol must be augmented by four operator patterns, and 
the (9-j) by six operator patterns (see also 0 5). In other words, each independent 
coupling defining the (n-j) coefficient must be supplemented by the proper operator 
pattern. Fortunately, the three rows and the middle column in the (9-j) of both (4.3) 
and (4.6) involve only multiplicity-free couplings and the corresponding operator 
patterns are uniquely determined by the shifts and thus redundant. The coupling 
represented by columns 1 and 3, however, do require operator patterns. We thus write 

1 n-1 1 [ o -  w(q n-13 1 

1 [u;fill [O- w(n1 [ m ( n  n-1 1 1  
for the U(n - 1 )  extension of the (9-j) in (4.3) (see also (5.4b)). The relevant operator 
patterns are inherited from the upper and lower operator patterns, respectively, of the 
projective operator on the left-hand side. Thus we assert that, with these changes, the 
results (4.3) and (4.6) are valid in U(n)  and completely define two classes of matrix 
elements for general U( n) tensor operators. Note that these coefficients, unlike U(3), 
are not necessarily multiplicity-free and, for the results to be meaningful, it is necessary 
to assume that all multiplicities have been (formally) resolved at the U( n - 1) level. 
Finally, note that (4.3) and (4.6) (when properly generalised to U(n) )  encompass the 
set of all elementary unit projective operators for U(n)  (Biedenharn and Louck 1968). 
Some of the corresponding expressions were first computed by Le Blanc and Hecht 
(1987) using a more restrictive framework. 

5. Structural properties of projective operators: limit properties 

We have evaluated in 0 4 unique and fully labelled projective operators for two classes 
of U( n) tensor operators. In this construction ( P  3), the operator patterns labelling 
the projective operators were inherited from their U(n - 1) intrinsic substructures. 
These results are indeed correct, but the labelling for these operators is by no means 
obvious and requires a formal proof, which we now supply. 

The concept of an operator pattern, together with a compatible Gel'fand-Weyl 
pattern as a unique, canonical labelling for tensor operators has been fully proven in 
U(3) (Biedenharn et a1 1967) and is meaningful (though not fully proved as canonical) 
in U(n).  Nonetheless, from a practical point of view, exactly how one determines a 
given element Tij in the operator pattern (r) may appear somewhat vague and indirect. 
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Certainly, no operators have been given, so far, whose eigenvalues are the labels rlj, 
in contrast to the situation for the my of the Gel’fand-Weyl pattern (Louck and 
Biedenharn 1970). We seek to clarify this situation in the present section and remark 
that the vcs construction aids very much in this effort by supplying matrix elements 
which will verify the labelling explicitly, as we now show. 

For U(2), the labelling is completely determined by the shifts. For U(3) and higher 
U(n),  this is no longer true and we get multiplicities. Nonetheless, the lexical (r) 
patterns precisely enumerate (one-to-one onto) the tensor operators in each multiplicity 
set. How can one associate a given operator pattern in a multiplicity set to a specific 
operator with explicit matrix elements? There are two known ways (Louck and 
Biedenharn 1970). 

( a )  Operator patterns are associated with the characteristic null space of the 
operator, i.e. the set of irrepst annihilated by the operator. For example, the generators 
in U( n )  are identified by the fact that the characteristic null space consists only of the 
irrep [O]. 

( b )  Operator patterns are determined by their limit properties. Consider the 
U( n )  : U( n - 1) projective operator [ :{(;;I 

( Y ) n - I  

labelled by the irrep [mr’] and the two operator patterns (I‘)n-l and ( Y ) , - ~ .  Using 
the recursion hypothesis that the U( n - 1) tensorial structure has been resolved, we 
see that the lower pattern ( Y ) , - ~  is determined from the expansion (4.1) on the U(n - 1) 
operator basis. The limit relation can now be given explicitly$ (Louck and Biedenharn 
1973): the U(n) :U(n-1)  projective operator acting on a generic ket vector in 
U( n )  : U( n - I) ,  i.e. 

in the limit mnn + --CD obeys the relation 

(5.1) 

The right-hand side of (5.1) defines a new object in the calculus of tensor operators 
denoted 

m,, . . -  % - l , n  [ i c ;  1 extended 1 m1,vt-l * * ’  172, - 1 , , I  - 1 

t The null space qualifier ‘characteristic’ implies that, if one vector in an irrep is annihilated, then all vectors 
of the irrep are annihilated by the operator. 
$ The limit relation in full generality is only implicit in the results of the reference cited; the general result, 
however, is easily given using the results cited and the product law for projective operators. 
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on the space of two U(n-1)  irreps: [min.. . mfl-l,fl] and [m,,,-, . . .  mfl- l ,n- l l .  We 
remark that this new function, the limit of projective operator function on the left-hand 
side of (5.1),  inherits as its domain the irrep labels of the factor space U(n):U(n - l ) ,  
with the single label innn deleted. We also remark that the product of delta functions 
on the right-hand side implies that a non-vanishing limit exist only for matrix elements 
of the unit projective tensor operator for which the condition 

(5.2) = w(.f)-  ( i )  - w - 0  

holds. (This observation could prove crucial for the unambiguous construction of all 
unit tensors belonging to a given multipicity set. This condition is shown below to 
hold for the two classes of vcs unit tensors constructed in 0 3.) 

It is a remarkable result (Louck and Biedenharn 1973, § IV and appendix B) that 
the limit function exists as a well defined object at the U(n - 1)  level: the right-hand 
side of (5 .1)  is a unitary 6 - j  operator U(n - 1). 

Specialising to U(3), the limit in (5.1) yields a unitary Racah function in U(2): 

(5.3a) 

(5.36) 

where the notation in (5 .3b)  has been introduced by Biedenharn and Louck (1981b) 
in the specific context of an U(2) extended pattern calculus. When acting on the 
truncated U(3) : U(2) factor space (m33 deleted), the U(2) invariant extended operator 
assumes the value 

= U([O, -wl[m,3, m23l[ml2+A,(Y),  m 2 2 + A 2 ( Y ) l [ Y l 2 ,  y221; 

[mi29 m221[m13 f A i ( r ) ,  m23 A2(r ) l )  (5.3c) 

where the parameters (w, A , (  y) ,  Ai(r)) of the unitary ( 6 - j )  coefficient have been defined 
in 90 2 and 3 (compare with (4.4b)). 

It is of interest to remark (Louck and Biedenharn 1973, LeBlanc 1987) that all 
Racah functions in U(2) can be obtained as limits of appropriate U(3) : U(2) projection 
operators. We note the quantity w in (5 .3)  appears naturally and meaningfully in the 
vcs framework. This same quantity also appears in the framework of an extended 
pattern calculus introduced by Biedenharn and Louck but its defining equation (Bieden- 
harn and Louck 19816, equation (4.45)), although similar to ours, had no direct 
interpretation there. Since the elementary projective operators are fully known from 
the pattern calculus (Biedenharn and Louck 1968), one sees that the pattern calculus 
rules for U(3) allow in a natural way the explicit evaluation of all fundamental ( 6 9 )  
operators in U(2).  

For U(n),  n 2 3 ,  the set of all ( 6 - j )  operators in U(n) can no longer be obtained 
as limits of U( n + 1) : U( n )  projective operators. One can see this most easily from the 
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structural properties of the (6-j) coefficients in U ( n ) ,  which involve not only six U ( n )  
irrep labels (associated geometrically with the lines of a tetrahedon) but also four 
operator patterns (associated with the four triangles in a tetrahedon). The notation 
(Louck and Biedenharn 1970) 

(5.4a) 

for a (6-j) matrix element in U(n) makes these relations evident in that one has 
explicitly the four operator patterns in evidence. The (implicit) vector coupling relations 
in ( 5 . 4 ~ )  are best displayed in the more explicit (9-j) operator form: 

(5.46) 

where the operator pattern relevant to a given coupling is identified by the equalities 

[",'2'] = [ m : )  + A ( Y ( 2 ' ) l  

[m(n23)] = [m(n2)+A(r(3))] (5.4c) 

[m,]= [m',"'+-A(y'23))]= [m"2'+A(y'3')]. 

(To remove ambiguity, operator patterns for triangles given by rows (columns) are 
placed above (below) the irrep.) This (9-j) pattern clearly displays the six irreps and 
the four operator patterns associated with the four non-trivial vector couplings of a 
U (  n )  'Racah' coefficient. 

Comparing this general (6-j) operator with the limit (extended) operator in (5.1) 
(and with equation (4.8)), one sees that only two of the four operator patterns 
and ( Y ' ~ ' ) )  occur in (5.1). It has been proven that the two missing operator patterns 
(( Y ' ~ ' )  and ( Y(~~))) correspond to multiplicity-free couplings involving, remarkably, a 
symmetric irrep [0- k] (Louck and Biedenharn 1973, (B6b)). vcs theory readily 
provides a simple explanation for this fact as the Young frame [m',"] is seen to 
correspond to a symmetric partition [0- w]. We then have 

1. mn-l ,n- l  )-[ W n - 2  ( Y L - 2  

[uti,] [ 0 - w ]  [mkLl] 
[ut?1] [ O ]  [mkil]  

[u(nCl] [0-w]  [ m l f l , ]  

m n - 1 , n  m,, [I:llex,e"d,dl m1,fl-I * ' *  

This also accounts for the fact that the limit relation (5.1) fails to give all (6-j) operators 
in U( n - l),  except for the special case of U(2) ( n  = 3) which is always multiplicity free. 

The results obtained in 5 4 provide a striking, and simple, exemplification in all 
U ( n )  of the limit property given in (5.1). Consider the result in (4.3) specialised to 
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U(3). The only place the limiting parameter q3 occurs is in the K factors. From the 
explicit form of the K factors, (2.15), we see that in the limit m33+ -CO, 

with 

implying that the limit is equal to 

( 5 5 2 )  

( 5 .5b )  

This condition for a non-vanishing limit can be rewritten in the terms of the shift 
Ai(r) = m${)-  mi:’ and Ai(? )  = rn${’- m$t), so that we have, for the non-vanishing 
condition in ( ~ S C ) ,  the relation 

Using the definition of the shifts, we see that 

(recall rk2 = m::’ for the case at hand) and 
2 

A k ( Y ) =  Y 1 2 + Y 2 2 = m ! : ) + m : : ‘ *  
k = l  

Thus the condition for a non-vanishing limit takes the form 
2 
C (rnti- m(k:))=O 

k = l  
( 5 . 6 ~ )  

which-because of the betweeness conditions-implies that each term in ( 5 . 6 ~ )  is 
positive and therefore 

k = 1,2. (5 .6b )  

This is precisely the delta function condition in (5.1) (recall once more that r k , n - l =  m!? 
for the case at hand while Y k , n - l =  m‘kfl-l always). 

A similar limit applied to the maximal A,, = m\; shift vcs operator of (4 .6)  shows 
that this result also limits properly to a U(n - 1) ( 6 - j )  operator. We thus conclude the 
vcs evaluation of two classes of projective operators in U(n),  (4 .3)  and (4 .6) ,  obey 
the limit theorem, (5.1),  if one assumes that the operator labels have been assigned as 
written. 

Conversely, the desired conclusion that the operator patterns in (3 .4)  and (3.8) 
have been correctly assigned follows from the above results. Since the lower pattern 
in these equations is generic, we may choose the lower pattern in, e.g. (4 .3) ,  to be 
maximal, “k;’ = mti ,  and then take the limit -a. We find from ( 5 . 5 )  and (5 .6)  

“ 7 ’  - “ 7 ’  - 
k 3  k 2 - 0  
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that rk2 must be m f i .  (The same considerations apply to (4.6).) This allows us to 
conclude that the vcs tensor operators in (3.3) and (3.7) at least have a limiting 
component that carries the assigned operator labels, but it does not establish that the 
tensors correspond uniquely to the assigned operator patterns. To complete the proof, 
we need only remark that (4.3) and (4.6) show that the K factors contain the only 
dependence on mnn. Thus the entire dependence on mnn of (4.3) and (4.6) is contained 
in a known multiplicative factor. The inverse limit to (5.1) thus exists, and this 
establishes the desired result. (We remark that more generally the limit m,,+-co 
yields a U( n - 1) ( 6 - j )  operator, for which the subsequent limit mH-l ,n- ,  + --a: then 
yields a U( n - 1) : U( n - 2 )  projective operator, etc. This sequence of limits validates, 
step by step, the entire operator pattern.) The K factors, which are crucial to this 
result, are typical of the vcs approach and show once again the significance of the 
vcs construction. 

Finally, we remark that, using the vcs expansion (2.9), it is easily demonstrated 
that the limit mnn + --CO corresponds to the contraction 

su(n)+u(n- l ) [hw(n- l ) ]  (5.7) 

of the su(n) Lie algebra to the semi-direct sum u(n - l)[hw(n - l)]. The u(n - 1) 
stability subalgebra, the piecewise sum by components of two U( n - 1) subalgebras, is 
left intact in the contraction process and this observation readily explains the natural 
appearance of U(n - 1) recoupling coefficients in the limit. 
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